Investigations of Lithium-Ion Battery Thermal Management System with Hybrid PCM/Liquid Cooling Plate

نویسندگان

چکیده

To improve the operating performance of large-capacity battery pack electric vehicles during continuous charging and discharging to avoid its thermal runaway, in this paper we propose a new hybrid management system that couples PCM with liquid cooling plate microchannels. The flow direction microchannel structure bottom is designed according characteristics large axial conductivity battery, whole under charge/discharge cycles numerically simulated. results show PCM/liquid can maintain good discharge process pack. After each cycle temperature be reduced less than 30°, maximum change rate multiple controlled within 0.8%. With application PCM/liquid-cooled system, safe range ensured even discharging. present work facilitate future optimizations vehicles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

Prevent thermal runaway of lithium-ion batteries with minichannel cooling

Thermal management on lithium-ion batteries is a crucial problem for the performance, lifetime, and safety of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Fire and explosions can be triggered by thermal runaway if the temperature of the lithium-ion batteries is not maintained properly. This work describes a minichannel cooling system designed at the battery module level and the ...

متن کامل

An Advanced Battery Management System for Lithium Ion Batteries

This paper describes the development of a Battery Management System (BMS) State of Charge/Health (SOC/SOH) algorithm that was developed and proven for three different lithium ion based cell chemistries (nanophosphate, lithium manganese oxide, lithium iron phosphate). In addition, a universal BMS architecture based on this algorithm was developed that can support other chemistries, capacities, a...

متن کامل

Performance Results for a Universal Lithium Ion Battery Management System

The advantages of lithium-based batteries over lead acid batteries have created great interest in developing safe and cost effective drop-in replacements. To achieve the required cost effectiveness and safety of the battery, Battery Management Systems (BMS) are critical to avoid over-charging, over-discharging, and continuously and accurately determining the State of Charge (SOC), State of Heal...

متن کامل

Thermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles

This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Processes

سال: 2022

ISSN: ['2227-9717']

DOI: https://doi.org/10.3390/pr11010057